Consider a 145-day put option at 30 on a stock selling at 27 with an annualized standard deviation of 0.30 when the continuously compounded risk-free rate is 4 percent. The value of the put option is closest to: [round d1 and d2 rather than interpolate for N(.)].
PT = [Xe-r (T) × (1 - N(d2))] - [ST × (1 - N(d1))]
where:
d1 = [ln(St / X) + [r + σ2/2](T) ] / σ √(T-t)
d2 = d1 - σ √(T)
Cumulative Standard Normal Probability:
--------------------------------------------------------------------
-----|-------------------------------------------------------------
0.3 | 0.6406 | 0.6443 | 0.648 | 0.6517
0.4 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 | 0.7123 | 0.7157 | 0.719 | 0.7224
--------------------------------------------------------------------
A)$3.32.
B)$3.64.
C)$3.97.
D)$4.07.
Your answer: B was correct!
T=145/365 = 0.39726
d1 = [ln(27/30) + [.04 + .32/2](.39726)] / (.3√.39726)
= (-.10536052 + .0337671) / .18908569
= -.07159342 / .18908569
= -0.37863
d1 = -0.37863 ≈ -0.38 N(d1) = 1 -0.6480 = 0.3520
d2 = -0.37863 - .3√.39726
= -0.37863 - .18908569
= -.56771569
= -.56772
d2 = -0.56772 ≈ -0.57 N(d2) = 1 - 0.7157 = 0.2843
PT = 30e-.04(.39726) (1-.2843) – 27(1-.352)
= (29.527056 × .7157) – 17.496
= 21.1325 – 17.496
p = $3.64
----------------------------------------------
PT = [Xe-r (T) × (1 - N(d2))] - [ST × (1 - N(d1))]
where:
d1 = [ln(St / X) + [r + σ2/2](T) ] / σ √(T-t)
d2 = d1 - σ √(T)
Cumulative Standard Normal Probability:
--------------------------------------------------------------------
0.06 | 0.07 | 0.08 | 0.09
0.3 | 0.6406 | 0.6443 | 0.648 | 0.6517
0.4 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 | 0.7123 | 0.7157 | 0.719 | 0.7224
--------------------------------------------------------------------
A)$3.32.
B)$3.64.
C)$3.97.
D)$4.07.
Your answer: B was correct!
T=145/365 = 0.39726
d1 = [ln(27/30) + [.04 + .32/2](.39726)] / (.3√.39726)
= (-.10536052 + .0337671) / .18908569
= -.07159342 / .18908569
= -0.37863
d1 = -0.37863 ≈ -0.38 N(d1) = 1 -0.6480 = 0.3520
d2 = -0.37863 - .3√.39726
= -0.37863 - .18908569
= -.56771569
= -.56772
d2 = -0.56772 ≈ -0.57 N(d2) = 1 - 0.7157 = 0.2843
PT = 30e-.04(.39726) (1-.2843) – 27(1-.352)
= (29.527056 × .7157) – 17.496
= 21.1325 – 17.496
p = $3.64
----------------------------------------------
Is the above solution correct. If yes I did not understand why N(d1) was calculated as "1-" and again in the Put Price formula it was "1-". Please help - Thanks Nik
Last edited: