The critical chi^2 value of 79.08 (in this case) would need to be provided, likely as a value in the overall lookup table. Excel function = CHISQ.INV.RT(5%, 60) = 79.08 verifies it. I don't think the question is especially well-written, it assume a bit too much familiarity in my opinion. As usual the null can be either one- or two-tailed; this question assumes a one-tailed test (which is the weakness: a question should not use the answers to convey the one-tailed assumption. Here, you have to infer a one-tailed test by noticing that all answers reflect that assumption).
So, the 79.08 value corresponds to the critical value such that 5% of the chi-square distribution (the "reject" region) is entirely in the right-tail (which, in turn, counterintuitvely, corresponds to a lower bound on volatility). In other words, around the sample volatility of 21.0%, a two-tailed 90% confidence region, which is informed by the critical value (in term which depends on df), will be bounded by 18.3% (lower) and 24.75% (upper). The 18.3% lower two-tailed corresponds to a 95% one-tailed, such that anything less than 18.3% falls into the 95% one-tailed reject region; I got 18.3% with 18.3% = sqrt(60*21%^2/79.08).
IMO, the hard part here is the one vs two tail, and as I mentioned, this question simply assumes one-tailed test. Given, or having looked up, the critical value of 79.08, it corresponds either to a one-tailed 95% test, or to one side of a two-tailed 90% test.
As this can be confusing, let me put it one more way: the critical chi^2 of 79.08 is analogous to the critical Z value of 1.645, as both are quantiles which identify the "beginning" of the 5% right-tail rejection region, such that test values greater than them will reject a one-sided 95% confidence test (although the chi-square is not symmetrical and morphs with df!).
This site uses cookies to help personalise content, tailor your experience and to keep you logged in if you register.
By continuing to use this site, you are consenting to our use of cookies.